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SUMMARY

Neural stemcells (NSCs) in the adultmammalian brain
serve as a reservoir for the generation of newneurons,
oligodendrocytes, and astrocytes. Here, we use sin-
gle-cell RNA sequencing to characterize adult NSC
populations and examine the molecular identities
and heterogeneity of in vivo NSC populations. We
find that cells in the NSC lineage exist on a continuum
through the processes of activation and differen-
tiation. Interestingly, rare intermediate states with
distinctmolecularprofilescanbe identifiedandexper-
imentally validated, and our analysis identifies puta-
tive surface markers and key intracellular regulators
for these subpopulations of NSCs. Finally, using the
powerof single-cell profiling,weconductameta-anal-
ysis to compare in vivo NSCs and in vitro cultures,
distinct fluorescence-activated cell sorting strategies,
and different neurogenic niches. These data provide a
resource for the field and contribute to an integrative
understanding of the adult NSC lineage.
INTRODUCTION

Populationsofneural stemcells (NSCs) in theadult brain represent

acritical reservoir of regenerativecellswith thepotential tocombat

neuronal injury and neurodegeneration. The adult brain contains

two NSC pools located in the sub-ventricular zone (SVZ) of the

lateral ventricles and the dentate gyrus (DG) of the hippocampus

(Zhao et al., 2008). Both NSC pools produce new neurons that

can integrate into functional circuits (Zhao et al., 2008). The

NSCs of the SVZ have been identified as a subtype of sub-epen-

dymal astrocytes (Doetsch et al., 1999; Garcia et al., 2004). The

majority of NSCs are quiescent and express glial fibrillary acidic

protein (GFAP) alongwith themarkerCD133 (Prominin 1) (Codega

et al., 2014; Fischer et al., 2011). ThesequiescentNSCs (qNSCsor

typeB1q cells) give rise to proliferative, activated neural stemcells
Cell
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(aNSCsor typeB1a cells) that express epidermal growth factor re-

ceptor (EGFR) (Codega et al., 2014). Activated NSCs can, in turn,

produce neural progenitor cells (NPCs or transient amplifying pro-

genitors [TAPs] or type C cells), a proliferative cell population that

expressesmarkersof early neuronal differentiation (Doetsch et al.,

2002). Finally, the NPCs give rise to neuroblasts (type A cells) that

migrate to the olfactory bulb, where they become primarily inter-

neurons (Garcia et al., 2004; Mirzadeh et al., 2008; Figure 1A).

The purification of NSCs from their in vivo niche has been

made possible by fluorescence-activated cell sorting (FACS)

via the expression of transgenic markers and defined surface

markers (Codega et al., 2014; Fischer et al., 2011; Garcia et al.,

2004; Mich et al., 2014). Purification of cell populations, coupled

to gene expression profiling, has begun to reveal the molecular

identities of NSCs in the SVZ (Codega et al., 2014; Mich et al.,

2014). However, population-based approaches have likely

obscured the underlying heterogeneity in the NSC lineage,

thereby limiting the identification of new rare cell types or inter-

mediates and hindering the characterization of complex tran-

scriptional dynamics. Although recent single-cell studies have

started to reveal the complex composition of NSC populations

in various neurogenic regions of the adult brain, the SVZ (Llo-

rens-Bobadilla et al., 2015; Luo et al., 2015), and the DG (Shin

et al., 2015), a comprehensive molecular understanding of the

heterogeneity of the neural stem cell lineage remains elusive.

Here we perform single-cell RNA sequencing on 329 high-

quality single cells from four different populations—niche astro-

cytes, qNSCs, aNSCs, and NPCs—freshly isolated from young

adult mouse SVZs. Usingmachine learning and pseudotemporal

ordering, we reveal subpopulations of NSCs along the spectrum

of activation and differentiation, which we experimentally vali-

date, and suggest putative markers for these subpopulations.

Using the power of single-cell transcriptomics, we compare

our single-cell dataset to other single-cell datasets, including

in vitro-cultured NSCs and other in vivo NSC datasets. Our find-

ings not only serve as a great resource for the field but also pro-

vide an integrative understanding of the neural stem cell lineage,

which is an essential step toward identifying new ways to reac-

tivate dormant NSCs in the context of stroke and aging.
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Figure 1. Single-Cell RNA-Seq of 329 Cells from Four Populations of FACS-Purified Cells from the SVZs of Adult Mice

(A) FACS scheme for the enrichment of astrocytes, qNSCs, aNSCs, and NPCs from the SVZs of adult mice and microfluidic-based single cell RNA-seq

library generation and sequencing. The checkered bar in the FACS scheme indicates that the presence of Prominin 1 was not selected for. Note that, although

Prominin 1 enriches for NSCs, the astrocyte population could contain some qNSCs, and the qNSC population could contain some astrocytes (Codega et al.,

2014).

(B) Principal component analysis (PCA) of all 329 high-quality single cells.

(C) Three-dimensional PCA of all 288 cells, excluding oligodendrocyte-like cells and seven outlying cells.
RESULTS

Single-Cell RNA-Seq from Four Populations of Cells
Directly Isolated from the SVZ Regenerative Region in
the Adult Mouse Brain
To define the molecular heterogeneity of the SVZ regener-

ative region in the adult mouse brain, we performed single-

cell RNA-sequencing from four cell populations—niche astro-
778 Cell Reports 18, 777–790, January 17, 2017
cytes, quiescent and activated NSCs, and more committed

NPCs. We implemented a well-accepted FACS protocol to

freshly isolate adult populations from the SVZ (Codega et al.,

2014) using a transgenic line in which GFP is under the con-

trol of the human GFAP promoter (GFAP-GFP mice) (Zhuo

et al., 1997). Single cells were dissociated from micro-

dissected SVZs from young adult (3 months old) GFAP-GFP

male mice and stained with markers of NSC identity and



activation, including CD133/Prominin 1 (PROM1) and EGFR.

This approach enabled us to isolate niche astrocytes (hence-

forth referred to as astrocytes) (GFAP-GFP+PROM1�

EGFR�), qNSCs (GFAP-GFP+PROM1+EGFR�), aNSCs (GFAP-

GFP+PROM1+EGFR+), and NPCs (GFAP-GFP�EGFR+), as

described in Codega et al. (2014) (Figure 1A; Figure S1A).

Each of these enriched populations was used to prepare

single-cell RNA-sequencing libraries using the Fluidigm C1

Single-Cell Auto Prep microfluidic system (Wu et al., 2014).

A total of 524 single cell libraries were sequenced on Illumina

MiSeq, and a subset was also sequenced on Illumina HiSeq

2000 (Tables S1, S2, S3, and S4). The majority of unique

genes in each library were detected by MiSeq (Figure S1B),

and there was good correlation between gene detection for

libraries sequenced on MiSeq and HiSeq for all genes except

those expressed at very low levels (Figure S1C), consistent

with previous observations that high sequencing depth is

not necessary to capture single-cell library complexity

(Pollen et al., 2014). We excluded low-quality cells based on

a threshold for reads mapping to the transcriptome and

number of genes detected (Figure S1D). On the remaining

329 cells, there was good correlation of gene expression

between two representative single cells (Pearson correlation =

0.602) or pseudopopulations (Pearson correlation = 0.932)

(Figure S1E). Furthermore, aggregated single-cell pseudo-

populations for each cell type cluster with population RNA

sequencing (RNA-seq) (D.S.L., K.H., and A.B., unpublished

data) for their associated cell type and away from a cell type

from an independent lineage (endothelial cells) (Figures S1F

and S1G), underscoring the quality of the single-cell RNA-

seq libraries.

To explore themolecular identities of individual single cells, we

performed global principal component analysis (PCA) projection

of all single cells profiled in this analysis. Most astrocytes,

qNSCs, aNSCs, and NPCs clustered in a well-defined ‘‘band,’’

although a subpopulation of cells sorted as qNSCs and NPCs

separated significantly from the majority of the single cells on

the second principal component (PC) of the PCA (Figure 1B).

Genes with the strongest contribution to this second PC were

highly enriched for genes involved in myelination and oligoden-

drocyte function/identity (e.g., Mog, Plp1, and Mbp) (Cahoy

et al., 2008; Figure S1H). Thus, a minority of oligodendrocytes

appear to be present in the population of cells sorted as qNSCs

and NPCs, which was also observed in another single-cell study

(Llorens-Bobadilla et al., 2015).

To focus our analysis on the NSC lineage, we excluded all cells

exhibiting an oligodendrocyte expression signature as well as

a small number of outlying cells that clustered away from the

NSC lineage (Figure 1B). PCA on the remaining cells revealed

clustering of the more quiescent cell types (astrocytes and

qNSCs) away from the active, proliferative cell types (aNSCs

and NPCs) (Figure 1C). Although there was no significant differ-

ence between astrocytes and qNSCs, consistent with previous

studies (Codega et al., 2014), aNSCs separated from NPCs (Fig-

ure 1C). Interestingly, a range of aNSCs was observed between

the quiescent and progenitor states (Figure 1C), raising the pos-

sibility that in vivo NSCs exist on a continuum of quiescence,

activation, and differentiation.
Single Cells from Populations of qNSCs, aNSCs,
and NPCs Can Be Ordered through Activation and
Differentiation, Suggesting Heterogeneity and
Intermediary States
To explore the intermediary states in the continuum of NSCs and

progeny, we performed pseudotemporal ordering of the single

cells using Monocle (Trapnell et al., 2014). Because astrocytes

and qNSCs could not be distinguished by PCA (Figure S2A) or

differential expression (Table S5), we omitted astrocytes from

the Monocle ordering analysis. Monocle ordering on qNSCs,

aNSCs, and NPCs using all detected genes revealed gene

expression dynamics that recapitulate the previous understand-

ing of the activation of NSCs (Figures 2A and 2B). Indeed, qNSCs

that highly express previously reported markers of this popula-

tion, such as Id3 (Bonaguidi et al., 2008; Mira et al., 2010), are

ordered first and are followed by aNSCs that have upregulated

Egfr (Figure 2B). As cells transition from qNSCs to aNSCs, they

first upregulate genes important for ribosomal biogenesis (e.g.,

Rpl32) before expressing markers of the cell cycle (Figure 2B).

This corroborates a recent study that described an early stage

of biogenesis in aNSCs prior to cell cycle entry (Llorens-Boba-

dilla et al., 2015). To experimentally validate the existence of

this population of ‘‘cell cycle-low’’ aNSCs, we stained popula-

tions of qNSCs, aNSCs, and NPCs sorted by FACS with the

cell cycle marker Ki67. Consistent with our single cell prediction,

a fraction of aNSCs was negative for the Ki67 cell cycle marker

(Figure 2C), and the proportion of Ki67-negative cells was signif-

icantly greater in the aNSC population than in NPCs (Figure 2D).

These results indicate that a subpopulation of aNSCs is not

cycling but that these cell cycle-low aNSCs are, in fact, already

expressing the EGFR protein, based on the FACS approach

we used, rather than merely expressing the Egfr transcript and

preparing to enter an EGFR-positive state.

Monocle ordering could not place NPCs after aNSCs,

perhaps because genes highly expressed in both cell types

(e.g., cell cycle, metabolism genes) masks more subtle tran-

scriptomic changes. Therefore, to increase the sensitivity of

Monocle ordering to the process of lineage commitment/differ-

entiation, we built machine learning models to identify the genes

most important for defining the trajectory of cells through four

states (Figure 2E): qNSCs, cell cycle-low aNSC, ‘‘cell cycle-

high’’ aNSCs, andNPCs.We implemented a four-way stochastic

gradient-boosting classification model (Friedman, 2002) using a

subsampled set of 20 cells from each of these four groups

(‘‘training set’’) (Figure 2E; code available at https://github.

com/bdulken/SVZ_NSC_Dulken_2). We bootstrapped this pro-

cess by building 100 independent models using independently

sampled subsets of single cells (Figure 2E). In predicting the

identity of cells that were not used to build the model (‘‘testing

set’’), the accuracy of the models was approximately 80% (Fig-

ure S2B), indicating that the models perform drastically better

than random assignment in predicting cell state. Machine

learning also identifies the genes that are most important for

the construction of the models (Table S6). Of these, we selected

the genes found in the top 100most important features in at least

half of the models, producing a list of 34 genes, several of which

were previously known to be dynamically regulated during NSC

activation and differentiation (e.g., Clu, Ccnd2, Dlx2, and Dcx)
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Figure 2. Ordering of Single Cells from Populations of qNSCs, aNSCs, and NPCs Reveals Transcriptional Dynamics and Suggests Inter-

mediary States

(A) Minimum spanning tree generated for all qNSCs, aNSCs, and NPCs ordered by Monocle using all detected genes.

(B) Expression of key genes associated with quiescence (Id3), activation (Egfr and Rpl32), and the cell cycle (Cdk1 and Ccna2) (fragments per kilobase of

transcript per million reads [FPKM]) in each cell, plotted with respect to pseudotime produced by Monocle in Figure 2A. Cells are color-coded by their FACS

identity.

(C) Histogram of Ki67 fluorescence values measured by intracellular FACS in purified populations of qNSCs, aNSCs, and NPCs. Histogram values were

normalized to mode.

(D) Percentage of Ki67-negative cells measured by intracellular FACS in purified populations of aNSCs and NPCs (two-sided Wilcoxon signed-rank test, **p %

0.005).

(E) Machine learning algorithm to obtain consensus-ordering genes. The list of consensus-ordering genes is shown in Table S7.

(F) Minimum spanning tree generated for all qNSCs, aNSCs, and NPCs ordered by Monocle using FPKM of the consensus-ordering genes (Table S7).

(G) Expression (FPKM) of key genes related to quiescence (Id3), activation (Egfr and Rpl32), the cell cycle (Cdk4 andCdk1), and neuronal differentiation (Dlx2 and

Dcx) (FPKM) in each cell is plotted with respect to pseudotime produced by Monocle when all qNSCs, aNSCs, and NPCs are ordered using the consensus-

ordering genes. Cells are color-coded by their FACS identity (indicated at the top). Bottom: name of the intermediary states (qNSC-like, aNSC-early, aNSC-mid,

aNSC-late, and NPC-like).
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Figure 3. Activated NSCs Can Be Divided into Specific Subpopulations, Defined by the Expression of Specific Genes, along the Spectrum

of Activation and Differentiation

(A) Diffusion map using the 2,500 most variable genes in the dataset for all qNSCs, aNSCs, and NPCs. Cells are colored by the identity of the intermediate states

defined in Figure 2G.

(B) PCA using the consensus-ordering genes (Table S7) for all qNSCs, aNSCs, and NPCs. Cells are colored as in (A).

(C) Spanning tree produced by Monocle when all qNSCs, aNSCs, and NPCs are ordered using the consensus-ordering genes (Table S7). The black line

represents the pseudotime ‘‘track’’ through the single-cell lineage. Cells are colored as in (A).

(D) Expression (FPKM) of genes relevant to the transition between the indicated stages in each cell, plotted with respect to pseudotime produced by Monocle

when all qNSCs, aNSCs, and NPCs are ordered using the consensus-ordering genes (Table S7). Cells are colored as in (A).

(E–H) Gene set enrichments for genes ranked by Z score for differential expression between cells in intermediate states defined in (A). Enrichments are expressed

as (�log10 [false discovery rate, FDR]), and directionality and color indicate the intermediate state in which the gene set is enriched. Comparisons shown for (E)

qNSC-like versus aNSC-early, (F) aNSC-early versus aNSC-mid, (G) aNSC-mid versus aNSC-late, and (H) aNSC-late versus NPC. The gene sets presented are

those for which FDR < 0.2.

(legend continued on next page)
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(Table S7). When Monocle-based cell ordering was conducted

using this subset of 34 ‘‘consensus-ordering’’ genes, it resulted

in a strikingly accurate recapitulation of the current understand-

ing of activation and commitment/differentiation of NSCs and

their progeny (Figure 2G; Figure S2C; Codega et al., 2014;

Doetsch et al., 2002; Llorens-Bobadilla et al., 2015). Monocle

ordering with the consensus-ordering genes not only orders

qNSCs first, followed by aNSCs negative for cell cycle markers,

but also captures the dynamics of differentiation (Figure 2G).

Indeed, a subset of aNSCs expressing cell cycle markers also

exhibits expression of Dlx2, a pro-neural transcription factor

known to promote neural differentiation (Doetsch et al., 2002;

Petryniak et al., 2007; Suh et al., 2009). These cells are ordered

later in pseudotime than other aNSCs, closely juxtaposed

with NPCs (Figure 2G). Thus, a subpopulation of aNSCs may

exhibit an early transcriptomic signature of neural differentiation.

NPCs themselves are predominantly ordered last and express

other important regulators and indicators of neurogenesis,

such as Dcx, Sp8, and Sp9 (Figure 2G; Figure S2C; Hsieh,

2012; Long et al., 2009; Waclaw et al., 2006). Other important

regulators of neurogenesis, such as Ascl1 and Pax6, are ex-

pressed throughout the aNSC and NPC populations (Fig-

ure S2C), consistent with evidence that Ascl1 is both required

for quiescent cells to enter the active state and for neuronal

differentiation (Andersen et al., 2014). Together, the dynamic

expression of key markers along this continuum of activation

and differentiation suggests five distinct consecutive molecular

states: qNSC-like (Egfr�), aNSC-early (Egfr+Cdk1�), aNSC-mid

(Egfr+Cdk1+Dlx2low), aNSC-late (Egfr+Cdk1+Dlx2high), and NPC-

like (Dlx2+Dcx+) (Figure 2G; Figures S2C and S3B; Table S8).

Thus, machine learning identifies specific consensus-ordering

genes that can order NSCs and progeny and suggests the exis-

tence of new intermediate states of activation and differentiation

within the aNSC population.

Activated NSCs Can Be Divided into Specific
Subpopulations, Defined by the Expression of Markers,
along the Spectrum of Activation and Differentiation
To independently corroborate the subpopulations identified by

machine learning and Monocle ordering (qNSCs-like, aNSC-

early, aNSC-mid, aNSC late, and NPC-like), we used diffusion

mapping, which has been recently developed to plot cells with

respect to their molecular trajectories (Haghverdi et al., 2015).

Diffusionmapping with the 2,500most variable genes (Figure 3A)

or all detected genes (Figure S3A) clusters the cells in a similar

manner asMonocle or PCA using the consensus-ordering genes

(Figures 3B–3D), confirming our machine learning approach.

To define the gene expression changes occurring between

all five states (qNSC-like, aNSC-early, aNSC-mid, aNSC-late,

and NPC-like), we conducted differential expression analysis at

each cell state transition using the single-cell differential expres-

sion tool single cell differential expression (SCDE) (Kharchenko
(I) Expression (FPKM) ofmarkers of astrocytes (Atp1a2,Gja1, andNtsr2) and neuro

(Slc1a3), a marker of astrocytes that was previously used in FACS studies, is pre

(J) Markers of astrocytes (Atp1a2,Ntsr2, andGja1) andmediators of self-renewal (

markers of neuronal differentiation (Dlx1 and Dlx2) in aNSC-mid and aNSC-late

genes in all aNSC-mid and aNSC-late cells.
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et al., 2014) and assessed pathway enrichment using gene

set enrichment analysis (GSEA) (Table S8). The transition from

qNSC-like to aNSC-early is characterized by upregulation of

genes belonging to ribosomal signatures (Figures 3D and 3E),

confirming our earlier observations (Figure 2) and findings from

another single-cell study in the SVZ (Llorens-Bobadilla et al.,

2015). As expected, the transition from aNSC-early to aNSC-

mid is characterized by upregulation of genes belonging to cell

cycle signatures (Figures 3D and 3F). The transition between

the aNSC-mid and aNSC-late cell states is defined partly by

the upregulation of Dlx1 and Dlx2, two genes normally associ-

ated with neuronal differentiation (Petryniak et al., 2007; Fig-

ure 3D). However, aNSC-late cells did not express the other

genes that are characteristic of the NPC-like population, such

as Dcx, Nrxn3, Dlx6as1, Sp8, and Sp9 (Figure 3D; Figure S3C),

suggesting that aNSC-late are distinct from NPCs. Interestingly,

the transition from aNSC-mid to aNSC-late is characterized by

downregulation of genes relating to astrocyte identity (Figure 3G),

such as Atp1a2, Gja1, and Ntsr2 (Cahoy et al., 2008; Figure 3I).

Astrocytic markers are further downregulated as cells transition

into the NPC-like state (Figures 3H and 3I). Thus, aNSCs that

highly express cell cycle genes can be further sub-divided into

two groups, a group still expressing astrocyte markers (charac-

teristic of earlier cells in the lineage) and a group in which early

neurogenesis markers begin to be expressed. These two states

could represent the division between a self-renewing NSC and a

lineage-committed NSC primed for differentiation.

This analysis also enables us to identify putative markers or

regulators that may be specific to these earlier, potentially self-

renewing NSCs. Indeed, althoughGLAST (Slc1a3) has been pre-

viously used as a marker to detect NSCs (Llorens-Bobadilla

et al., 2015; Mich et al., 2014), it is actually expressed in

aNSC-mid, aNSC-late, and NPCs (Figure 3I). In contrast, other

markers appear to be more specific to the aNSC-mid subtype,

including the cell surface genes Atp1a2, Gja1, and Ntsr2 (Fig-

ure 3I). Although these genes are also expressed in other cell

types in the brain, including cortical astrocytes, they could serve

to isolate the aNSC-mid group in combination with othermarkers

of NSCs. Furthermore, Jagged1 and Fgfr3, which have been

implicated in NSC self-renewal (Maric et al., 2007; Nyfeler

et al., 2005), are among the genes elevated in the aNSC-mid cells

(Figure S3D) and could also potentially serve as markers in com-

bination with other NSC markers. Interestingly, genes that are

enriched in the aNSC-mid population, including markers of as-

trocytes (Atp1a2, Ntsr2, andGja1) and mediators of self-renewal

(Fgfr3 and Jag1), are correlated with each other and anti-corre-

lated with genes associated with the aNSC-late population,

Dlx1 andDlx2, in the aNSC-mid and aNSC-late states (Figure 3J;

Figure S3F). Collectively, these data support the notion that the

division between the aNSC-mid and aNSC-late populations is

associated with the loss of astrocytic gene signatures and the

acquisition of a pro-neural gene expression signature.
genesis (Dlx1 andDlx2) in each cell plotted as a function of pseudotime.GLAST

sented as a comparison at the top. Cells are colored as in (A).

Jag1 and Fgfr3) are correlated with each other and are anticorrelated with early

cells. The carpet plot shows correlation (Spearman’s rho) between individual



Experimental Validation of Single-Cell Data Prediction
by Purifying aNSC Subpopulations Using the Level of
GFAP-GFP Expression
We next experimentally validated the existence of specific

aNSC subpopulations. The GFAP-GFP transgene is known to

be downregulated as NSCs commit to the NPC state (Doetsch

et al., 2002; Pastrana et al., 2009; Figure 4A). Indeed, GFP tran-

script levels from the GFAP-GFP transgene positively correlate

with markers of astrocytes and negatively correlate with early

markers of neurogenesis in aNSCs (Figure 3J). We therefore

used FACS to sort different populations of aNSCs based on

their level of GFP fluorescence from the GFAP-GFP transgene.

Because we did not know the levels of GFP fluorescence to

which aNSC transitions would correspond, we sorted three

subpopulations of aNSCs: GFAP-high (GFAP-GFP(high)PROM1+

EGFR+), GFAP-mid (GFAP-GFP(mid)PROM1+EGFR+), and

GFAP-low (GFAP-GFP(low)PROM1+EGFR+) as well as NPCs

(GFAP-GFP(neg)EGFR+). As predicted by the single-cell data,

aNSCs sorted by FACS with higher levels of GFP fluorescence

expressed markers of astrocytes and self-renewal, such as

Atp1a2 and Ntsr2 (Figures 4B and 4C). Consistent with single-

cell data, aNSCs with the lowest levels of GFP fluorescence

had significantly higher expression of Dlx2 and Dlx1 (markers

of early neurogenesis) (Figure 4D; Figure S4B) but did not yet

express other later makers that were more exclusively ex-

pressed in NPCs, such asNrxn3 andDcx (Figure 4E; Figure S4C).

The populations expressed equal amounts of genes detected

equally in all aNSCs subpopulations, such as Egfr (Figure S4D).

The subdivision of the aNSC population by GFP levels generally

recapitulated the gene correlationmodule, as shown in Figure 3J;

specifically, the positive correlation between markers of astro-

cytes and mediators of self-renewal and anti-correlation be-

tween these genes and early mediators of neurogenesis (Dlx1

and Dlx2) (Figure 4F; Figure S4I). In contrast, this sorting scheme

could not distinguish the aNSC-early and aNSC-mid popula-

tions, which differed in their expression of cell cycle markers

(Figures S4E–S4G), probably because these two populations ex-

press GFP at similar levels. Thus, the molecular states along the

spectrum of activation and differentiation predicted by single-

cell analysis can be experimentally validated.

In the Spectrum of NSC Activation and Differentiation,
In Vitro-Cultured NSCs Resemble In Vivo aNSCs but
Exhibit a Signature of Inflammation
Cultures of primary NSCs as neurospheres have been used to

study NSCs in vitro (Conti and Cattaneo, 2010; Hitoshi et al.,

2002; Ma et al., 2014), although it is debated whether these cells

are good models for in vivo NSCs (Conti and Cattaneo, 2010;

Parker et al., 2005). To understand how cultured NSCs compare

with their in vivo counterparts, we performed single-cell RNA-

seq of passage 3 neurospheres (NSs) cultured from FACS

aNSCs sorted by FACS (Figure 5A). Single cells were filtered

for quality in the samemanner as in vivo cells (Figure S5A), result-

ing in 62 high-quality single-cell RNA-seq datasets. To determine

where cultured NS single cells fall on the spectrum of activation

and differentiation of in vivo neural progenitors, we performed

PCA using the consensus-ordering genes (Table S7) on all of

our in vivo single qNSCs, aNSCs, and NPCs and projected the
single NS cells onto this PCA space (Figure 5B). This analysis

revealed that single NS cells most closely resemble the aNSC-

mid population (proliferative aNSCs that have not yet begun to

express neuronal differentiation markers) with respect to the

expression of key genes that define the activation and differenti-

ation of NSCs. However, when PCA was performed using all

in vivo cells and in vitro neurosphere single cells, the neuro-

spheres cluster separately from the in vivo lineage (Figure S5C),

suggesting that there are also significant differences between

the in vivo and in vitro states. Differential expression using

SCDE between the cultured NS single cells and in vivo aNSCs

or NPCs revealed that many of the genes significantly enriched

in the in vivo populations are markers of neuronal differentiation,

such as Dlx2, Dcx, Nrxn3, and Dlx6as1 (Figure 5D; Figure S5B;

Table S9). This is consistent with the notion that cultured neuro-

spheres do not express markers of neuronal differentiation but

express markers of astrocytes (Figure 5D Figure S5B), likely rep-

resenting an undifferentiated, self-renewing state.

To identify global pathways that are different between cultured

NS cells and in vivo NSCs, we performed GSEA on genes differ-

entially expressed between the in vivo and in vitro states (Table

S9). Strikingly, pathways associated with inflammation and cyto-

kine signaling were among those upregulated in the cultured NS

cells (Figure 5C). Furthermore, genes associated with inflamma-

tory signaling, such as Fas and Ifitm3, were highly expressed in

many in vitro single cells but were not consistently detected

in vivo (Figure 5E; Figure S5B). Thus, although cultured NSCs

resemble aNSC-mid cells on the spectrum of NSC activation

and differentiation, there are important differences between

cultured neurospheres and in vivo NSCs, such as the expression

of markers of inflammation. Understanding these differences

could help better model NSCs in vitro.

Meta-analysis of Single Cells Isolated by Different FACS
Methods Using the Power of Single-Cell
Transcriptomics
A single-cell characterization of NSCs in the SVZ was recently

published (Llorens-Bobadilla et al., 2015), using a different disso-

ciation method (trypsin instead of papain) and a distinct FACS

strategy (Llorens-Bobadilla et al., 2015; Figure 6A). This provides

a unique opportunity to address questions regarding the identity

of cells isolated by different approaches. The study by Llorens-

Bobadilla et al. (2015) isolated two populations by FACS from

wild-type mice: GLAST+PROM1+ (NSCs) and GLAST�PROM1�

EGFR+ (TAPs) (Figure 6A), whereas we isolated four popula-

tions by FACS from GFAP-GFP transgenic mice: GFAP-

GFP+PROM1�EGFR� (niche astrocytes), GFAP-GFP+PROM1+

EGFR� (qNSCs), GFAP-GFP+PROM1+EGFR+ (aNSCs), and

GFAP-GFP�EGFR+ (NPCs/TAPs). One main difference is that

Llorens-Bobadilla et al. (2015) used the surface protein GLAST

to purify NSCs from wild-type mice, whereas we isolated them

using GFP from GFAP-GFP transgenic mice. Another main dif-

ference is that the study by Llorens-Bobadilla et al. (2015) did

not differentiate between qNSCs and aNSCs, whereas we

used the marker EGFR to distinguish aNSCs from qNSCs (Fig-

ure 6A). The method of cell dissociation and marker choices

for FACS have been areas of active debate in the field of NSC

biology (Codega et al., 2014; Luo et al., 2015; Mich et al.,
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A

B C D

E F

Figure 4. Experimental Validation of the Difference between aNSC-Mid and aNSCs-Late Subpopulations by Separating aNSCs Based on the

Level of GFAP-GFP Expression by FACS

(A) Predicted GFP fluorescence states of aNSCs from a GFP-high state in which the GFAP-GFP promoter is active, to a GFP-low state in which the cells have

committed to differentiation but retain some GFP and, finally, to the NPC state, in which cells are GFP negative.

(B–E) Top: gene expression in single cells grouped by molecular subtype as defined in Figure 3. Gene expression is expressed as log2(FPKM + 1). Bottom: gene

expression was measured by qRT-PCR in subpopulations of aNSCs divided by their level of GFAP-GFP expression (GFAP-GFP-high aNSC, GFAP-GFP-mid

aNSC, and GFAP-GFP-low aNSC) and NPCs. Expression shown for (B)Atp1a2, (C)Ntsr2, (D)Dlx2, (E)Nrxn3. The p values are from a one-sidedWilcoxon signed-

rank test (*p % 0.05).

(F) Correlation between expression of key markers of NSCs and neurogenesis in aNSC populations divided by GFAP-GFP. The carpet plot shows correlation

(Spearman’s rho) between individual genes in all aNSC subpopulations divided by level of GFAP-GFP. The color of the box indicates correlation (Spearman’s rho)

between a given gene pair (scale at top left).
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Figure 5. In the Spectrum of NSC Activation

and Differentiation In Vivo, In Vitro-Cultured

Neurospheres Resemble aNSCs but Exhibit

a Signature of Inflammation

(A) Preparation of single cell RNA-seq libraries

from passage 3 neurospheres (NS) derived from

aNSCs sorted by FACS.

(B) PCA with qNSCs, aNSCs, and NPCs using

expression [log2(FPKM + 1)] of the consensus-

ordering genes from machine learning models

(Table S7). NS single cells are projected onto the

resulting principal component space. Cells are

colored by identity as defined in Figure 2G, and NS

single cells are shown in black.

(C) Gene set enrichments for genes ranked by

Z score for differential expression between single

NS cells and in vivo aNSCs and NPCs. Enrich-

ments expressed as [�log10(FDR)], and direc-

tionality and color indicate the intermediate state in

which the gene set is enriched (FDR < 0.2).

(D) Expression of genes associated with astrocyte

identity, self-renewal, and neurogenesis in in vitro

NS single cells and in vivo NSCs. The violin plots

show gene expression in the cellular states

defined in Figure 2G as well as in NS single cells.

(E) Expression of genes associated with inflam-

matory signatures in single NS cells and in vivo

NSCs. Data are presented as in Figure (D).
2014). To compare these single-cell datasets, we independently

mapped the raw sequencing data from the study by Llorens-

Bobadilla et al. (2015) using our pipeline. When we conducted

global PCA using all cells from both studies, the primary axis of

variation was defined by the study, likely because of differences

in library preparation and sequencing depth (Figure S6A). How-

ever, whenwe projected cells used in the study of Llorens-Boba-

dilla et al. (2015) onto a PCA with either the consensus-ordering

genes (Table S7) or the most variable genes from our study, we

observed an alignment of the cell types profiled in each study

(Figure 6B; Figure S6B). Furthermore, Monocle ordering with

the consensus-ordering genes on the NSCs and TAPs from Llo-

rens-Bobadilla et al. (2015) revealed that the dynamic expression

of key genes with respect to pseudotime is very similar between

the two datasets (Figures 6C and 6D; Figures S6C and S6D). In

both datasets, quiescent NSCs high in Id3 and Clu are ordered

earliest, and activation is accompanied by an upregulation of

genes important for ribosome biogenesis, followed by the upre-
Cell R
gulation of cell cycle genes (Figures

6C and S6D). Interestingly, a subset of

aNSCs from the study of Llorens-Boba-

dilla et al. (2015) expresses high levels

of cell cycle markers (Cdk1) as well as

Dlx2 transcript (Figure 6D). This state is

reminiscent of the aNSC-late cells

described in Figure 3. Moreover, the tran-

sition from aNSCs to NPCs (TAPs), char-

acterized by expression of neuron-asso-

ciated genes such as Dcx and Dlx6as1,

is also highly conserved in both datasets

(Figures 6C and 6D; Figures S6C and
S6D). Importantly, although NPCs (TAPs) express somemarkers

usually associated with type A neuroblasts (e.g., Dcx), they also

express cell cycle markers (Figure S6E and S6F), unlike neuro-

blasts, which do not express cell cycle markers (Figure S6E; Llo-

rens-Bobadilla et al., 2015). Thus, the transcriptional dynamics

of NSC regulators captured in these divergent FACS approaches

are very similar with respect to the expression of key genes

dynamically regulated along the processes of activation and

differentiation.

Meta-analysis of Global Gene Expression in Different
Single-Cell Studies, Including SVZ and DG
We next performed a global assessment of the similarities be-

tween NSC lineages in our study and the study of Llorens-Boba-

dilla et al. (2015) using all genes. We first ranked all detected

genes in our dataset by their average pseudotime of expression

(APE) (Figure 7A). APE represents the average pseudotime of all

cells expressing a given gene for all qNSCs, aNSCs, and NPCs
eports 18, 777–790, January 17, 2017 785



Figure 6. Meta-analysis to Compare Single

Cell Identities of SVZ NSCs Isolated Using

Divergent FACS Strategies

(A) Comparison of FACS schemes implemented in

our study and in the study of Llorens-Bobadilla

et al. (2015).

(B) PCA on all qNSCs, aNSCs, and NPCs from our

study, using the expression [log2(FPKM+ 1)] of the

2,500 most variable genes in these cells. All NSCs

and TAPs from the study of Llorens-Bobadilla et al.

(2015) are projected onto the resulting principal

component space. Cells are colored by FACS-

sorting identity, as indicated on the right.

(C and D) Regulators of activation and differ-

entiation exhibit similar dynamics in NSCs and

progeny isolated by divergent FACS schemes.

Expression (FPKM) of key markers of activation

and differentiation in each cell are plotted as a

function of pseudotime generated by Monocle

ordering using the consensus-ordering genes

identified by machine learning (Table S7) for (C) all

qNSCs, aNSCs, and NPCs from our study and (D)

NSCs and TAPs analyzed by Llorens-Bobadilla

et al. (2015). Cells are colored by FACS identity, as

indicated on top.
ordered by Monocle using the consensus-ordering genes (Table

S7). Pseudotime expression heatmaps (Supplemental Experi-

mental Procedures) for the qNSCs, aNSCs, and NPCs in our

study and for the NSCs and TAPs from Llorens-Bobadilla et al.

(2015) revealed that most detected genes show a high similarity

in their expression profile (Figure 7B). Furthermore, the genes

exclusively expressed in NPCs (or TAPs) are highly conserved

between the two datasets (Figure 7C). The correlation between

the APE rankings, when genes are independently ranked by

APE using the two datasets, was excellent between our dataset

and the dataset of Llorens-Bobadilla et al. (2015) (Figure 7D;

Spearman’s rho = 0.63). The agreement between the global

expression profiles of these cells is striking, considering the

different FACS isolation protocols and the different depths to

which the cells were sequenced. The correlation between the in-

dependent APE gene rankings for the cells from our study and

the differentiating myoblasts from (Trapnell et al., 2014) was still

positive but much lower (Figure 7E; Spearman’s rho = 0.17).

Thus, the correlation between the SVZ NSC datasets cannot

be solely attributed to cell cycle entry. Similar results were

obtained when we performed Monocle ordering using the

consensus-ordering genes with the normalized expression

values provided by Llorens-Bobadilla et al. (2015) and Trapnell

et al. (2014) (Figures S7B, S7C, S7F, and S7G). The concor-

dance between our study and that of Llorens-Bobadilla et al.

(2015) suggests global similarities between the lineages isolated

in these two studies. Because our RNA-seq libraries were
786 Cell Reports 18, 777–790, January 17, 2017
sequenced at much lower depth than

those from the study of Llorens-Bobadilla

et al. (2015), these results also suggest

that low-throughput sequencing is suffi-

cient to capture complex transcriptional

dynamics in single cells.
Wenext extended this type of analysis to other NSC single-cell

datasets. Shin and colleagues generated 142 single-cell RNA-

seq datasets from hippocampal NSCs (Shin et al., 2015). The

overall gene expression pattern in single NSCs from the hippo-

campus was similar to that of the SVZ (Figure S7D), and there

was positive correlation in independent gene rankings by APE

for our study and hippocampal NSCs profiled by Shin et al.

(2015) (Figure 7F; Spearman’s rho = 0.38). This correlation was

higher than the gene ranking correlation between SVZ NSCs

and differentiating myoblasts, suggesting similarities between

neurogenic niches beyond general processes of cell prolifera-

tion. Similar results were observed using the consensus-

ordering genes (Figures S7E and S7H). Thus, the primary gene

signatures of quiescence and activation may be conserved in

the neurogenic niches in the adult brain.

This meta-analysis indicates that the NSC lineages identified

by divergent FACS schemes resulted in the isolation of very

similar cells and suggests similarities between the gene signa-

tures of quiescence and activation in the two different adult

neurogenic niches.

DISCUSSION

Our single-cell RNA-seq on cells from four purified populations

from the adult mouse SVZ—niche astrocytes, qNSCs, aNSCs,

and NPCs, reveals heterogeneity and transcriptional dynamics

in the adult neural stem cell lineage. Our data revealed that



Figure 7. Meta-analysis to Compare Global Pseudotime-Dependent Gene Expression in Various Single-Cell Datasets

(A) Schematic outlining the approaches for generating pseudotime expression heatmaps and for correlating gene rankings by APE (Supplemental Experimental

Procedures) for different single-cell datasets.

(B) Heatmap representing the expression of all detected genes ranked by APE defined in our study. Expression is plotted as a function of pseudotime. Left:

expression from our study (qNSCs, aNSCs, and NPCs) and pseudotime defined by Monocle ordering using consensus-ordering genes identified by machine

learning (Table S7). Right: expression from the study of Llorens-Bobadilla et al. (2015) (NSCs and TAPs) and pseudotime defined by Monocle ordering using

consensus-ordering genes (Table S7).

(C) Heatmap representing expression of the 20 genes with the highest values of APE (expressed most exclusively in NPCs) in our dataset. Left: expression from

our study (qNSCs, aNSCs, and NPCs) and pseudotime defined as in (B). Right: expression from the study of Llorens-Bobadilla et al. (2015) (NSCs and TAPs) and

pseudotime defined as in (B).

(legend continued on next page)
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FACS aNSCs sorted by FACS can be divided into three groups

along the process of activation and differentiation: aNSC-early,

aNSC-mid, and aNSC-late. The aNSC-late subpopulation can

be enriched by sorting aNSCs with low levels of GFAP-GFP. In

the future, excluding the population of cells expressing GFAP-

GFP at low levels may allow for the enrichment of the earliest,

putatively self-renewing stem cells using FACS.

The power of single-cell profiling also allowed us to perform a

global comparisonwith other single-cell studies. The high correla-

tionbetween the identities of the single cells profiled in the study of

Llorens-Bobadilla et al. (2015) andour study is highly instructive for

FACSprotocols for invivoNSCs. Inourprotocol (basedonCodega

et al., 2014), we used the enzyme papain to digest the SVZ for

FACS, and we have found that papain cleaves GLAST (B.W.D.,

D.S.L., and A.B., unpublished data), the marker that was used in

the study of Llorens-Bobadilla et al. (2015). Thus, an enzyme other

than papain should be usedwhen sorting byGLAST (and, indeed,

Llorens-Bobadilla et al., 2015, used trypsin). Our meta-analysis of

single-cell data isencouraging for thefieldofNSCbiologybecause

it suggests that divergent methods for isolating or identifying the

SVZ NSCs that use either GFAP-GFP (Beckervordersandforth

et al., 2010; Codega et al., 2014; Fischer et al., 2011) or GLAST

(Calzolari et al., 2015; Llorens-Bobadilla et al., 2015; Mich et al.,

2014) isolate very similar cell types from the SVZ. Furthermore,

the similarities of the pseudotime-related expression profiles of

quiescent and active NSCs from the hippocampus (Shin et al.,

2015) and SVZ (Llorens-Bobadilla et al., 2015 and our study) sug-

gest that themolecularphenotypesofquiescenceandactivation in

these cell types are at least partially conserved.

As technology for sequencing hundreds and even thousands of

single cells emerges (Cadwell et al., 2016; Fan et al., 2015; Habib

et al., 2016; Klein et al., 2015; Macosko et al., 2015), it is likely

that the single-cell characterization of the adult NSC lineage will

continue to improve. These developments will complement other

methods for characterizing in vivo cell heterogeneity, such as line-

age tracing, toprovidemorecompletedefinitionsofadult stemcell

lineages (Goodell et al., 2015;Merkle et al., 2014). The knowledge

of transcriptional dynamics and cell fate decisions as NSCs acti-

vate and commit to differentiation should provide key targets for

recruiting NSCs or directing their differentiation. The improved

definition of the NSC lineage at the single-cell level should also

facilitate the study of NSCs in the context of aging and disease.

EXPERIMENTAL PROCEDURES

NSC Isolation from Adult Mouse Brains

Animal procedures were conducted under APLAC protocol #8661. For single-

cell RNA-seq library generation of in vivo cells, four 3-month-old male GFAP-

GFP mice (the Jackson Laboratory, catalog no.003257) were euthanized, and

brains were immediately harvested. As described in Codega et al. (2014, the

SVZ from each hemisphere was micro-dissected. The SVZ was dissociated
(D) Smooth scatterplot representing gene ranks by APE in (x axis) qNSCs, aNSCs

genes identified by machine learning (Table S7) and (y axis) NSCs and TAPs fro

consensus-ordering genes identified by machine learning (Table S7) (Spearman’

(E) Smooth scatterplot representing gene rankings by APE in (x axis) qNSCs, aNSC

myoblasts ordered by Monocle from Trapnell et al. (2014) (Spearman’s rho = 0.1

(F) Smooth scatterplot representing gene rankings by APE in (x axis) qNSCs, aNS

ordered by Waterfall in the study by Shin et al. (2015) (Spearman’s rho = 0.38, p
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with enzymatic digestion with papain for 10 min at a concentration of

14 U/mL. The dissociated SVZ was then titrated in a solution containing

0.7 mg/mL ovomucoid and 0.5 mg/mL DNaseI in DMEM/F12. The dissociated

SVZ was then centrifuged through 22% Percoll in PBS to remove myelin

debris. Following centrifugation through Percoll solution, cells were washed

with FACS buffer (Hank’s balanced salt solution [HBSS], 1% BSA, 1%

glucose). Antibody staining was carried out in FACS buffer at the following

dilutions: Prom1-Biotin (eBioscience, catalog no. 13-1331-80, 1:300), EGF-

Alexa Fluor 647 (Life Technologies, catalog no. E35351, 1:300), CD24-PacBlue

(eBioscience, catalog no. 48-0242-80, 1:400), CD31-phycoerythrin (PE) (eBio-

science, catalog no. 12-0311-81, 1:50), CD45-BV605 (BioLegend, catalog no.

110737, 1:50), and Strep-PECy7 (eBioscience, catalog no. 25-4517-82,

1:500). FACS was performed on a BD FACS Aria II sorter using a 100-mm

nozzle at 13.1 psi. Cell gates were defined as follows (Codega et al., 2014):

Astrocytes: (GFAP-GFP)+ PROM1�CD31�CD24�CD45�

qNSCs: (GFAP-GFP)+PROM1+EGFR�CD31�CD24�CD45�

aNSCs: (GFAP-GFP)+PROM1+EGFR+CD31�CD24�CD45�

NPCs: (GFAP-GFP)�EGFR+CD31�CD24�CD45�

Endothelial cells: (GFAP-GFP)�CD31�

Cells were sorted into catching medium: DMEM/F12 with B27 (1:50), B27

supplement (Thermo Fisher, no vitamin A, 1:50), N2 supplement (Thermo

Fisher, 1:100), 15 mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)

(HEPES) buffer, 0.6% glucose, penicillin-streptomycin-glutamine (Life Tech-

nologies, 1:100), and insulin-transferrin-selenium (Life Technologies, 1:1000).

Cells were then spun down at 3003 g at 4�C and resuspended in catchingme-

dium at a concentration of 300 cells/mL.

Single-Cell RNA-Seq Library Preparation

A 300 cells/mL cell solution was mixed at a 7:3 ratio with Fluidigm C1 suspen-

sion reagent, and this solution was loaded onto a small (5–10 mm) Fluidigm C1

Single-Cell Auto Prep chip for all in vivo single cells studied and a medium

(10–17 mm) Fluidigm C1 Single-Cell Auto Prep chip for in vitro-cultured neuro-

sphere-derived single cells. Live/dead staining was performed using Fluidigm

live/dead cell staining solution as described in the FluidigmC1mRNA-seq pro-

tocol and imaged using a Leica DMI4000B microscope. Reverse transcription

and PCR was performed directly on the chip using the SMARTer chemistry kit

from Clontech, and PCR was also performed on the chip using the Advantage

PCR kit (SMARTer Ultra LowRNAKit for the FluidigmC1, Clontech, catalog no.

634832). The resulting cDNAwas transferred to a 96-well plate, and a subset of

representative samples was analyzed by BioAnalyzer. A quarter of the cDNA

for each library was quantified using the Quant-iT PicoGreen dsDNA assay

kit (Thermo Fisher, catalog no. P11496) and verified to be within a range of

0.1–0.5 ng/mL (or diluted, when necessary, with C1 DNA dilution buffer).

Sequencing libraries were prepared directly in a 96-well plate using the

Nextera XT library preparation kit (Illumina, catalog no. FC-131-1024). Each

library was individually barcoded using the Nextera XT 96 sample index kit

(Illumina, catalog no. FC-131-1002), and all 96 barcoded libraries from each

chip were pooled into single multiplexed libraries. The DNA concentration of

multiplexed libraries was measured using BioAnalyzer. These multiplexed

libraries were sequenced using either Illumina MiSeq (Illumina) or HiSeq2000

(Illumina) at a concentration of 2 pM. Details can be found in Table S1.

Construction of a Machine Learning Model and Determination of

Consensus-Ordering Genes

We carried out a four-way classification between the following groups that

correspond to key states/subpopulations: qNSCs, cell cycle low aNSCs, cell
, and NPCs from our study ordered by Monocle using the consensus-ordering

m the study of Llorens-Bobadilla et al. (2015) ordered by Monocle using the

s rho = 0.63, p < 2.2e�16).

s, and NPCs from the current study ordered as in (D) and (y axis) differentiating

7, p < 2.2e�16).

Cs, and NPCs from our study ordered as in (D) and (y axis) hippocampal NSCs

< 2.2e�16).



cycle high aNSCs, and NPCs. Classification was carried out by implementing a

stochastic gradient-boosted classification model using the Comprehensive R

Archive Network (R CRAN) package generalized boosted regression models

(GBM) v2.1.1. Briefly, 20 single cells from each group (training set) were

randomly selected and subjected to GBM modeling as implemented by the

Caret package v.6.0-58 in R. The accuracy of the model was tested on cells

that were not used for the training set. The GBM classification was bootstrap-

ped by repeatedly sampling 20 cells from each group and building an indepen-

dent model. In total, 100 GBMmodels were built. Following construction of the

models, the top 100 features from each of the 100 models were obtained. A

consensus set of ordering genes was built using genes that were in the top

100 most important features of at least half of the classification models or in

the top 100 most important features of at least 25% of the models (Table S7).

Ordering Cells with Monocle Using Consensus-Ordering Genes

Monocle ordering was conducted for all qNSCs, aNSCs, and NPC cells using

the set of consensus-ordering genes (Table S7) identified bymachine learning.

The expression of genes of interest was plotted with respect to pseudotime.

The resulting pseudotime expression spectrum was divided according to the

expression of genes of interest. The approach used to divide the pseudotime

expression spectrum is enumerated below:

qNSC-like to aNSC-early – Earliest pseudotime at which Rpl4, Rpl32, and

Egfr are predominantly expressed

aNSC-early to aNSC-mid – Earliest pseudotime at which Ccna2, Cdk1,

and Ccnb2 are predominantly expressed

aNSC-mid to aNSC-late – Earliest pseudotime at which Dlx1 and Dlx2 are

predominantly expressed

aNSC-late to NPC-like – Earliest pseudotime at whichNrxn3,Dlx6as1, and

Dcx are predominantly expressed

Differential expression between the putative groups was conducted using

the R package SCDE v1.2.1 (Kharchenko et al., 2014), and genes were ranked

by Z score for differential expression between groups. Pathway enrichment

was performed on ranked lists with GSEA using GO Biological Process and

contains related neuroepithelial cell identity (Lein et al., 2007) lists.
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